Documentation

Foundation.Propositional.Classical.Basic.Semantics

theorem LO.Propositional.Classical.Formula.valAux_neg {α : Type u_1} {F : Type u_2} [LogicalConnective F] [DeMorgan F] (v : αF) (φ : Formula α) :
valAux v (φ) = valAux v φ
def LO.Propositional.Classical.Formula.val {α : Type u_1} {F : Type u_2} [LogicalConnective F] [DeMorgan F] (v : αF) :
Equations
Instances For
    @[simp]
    theorem LO.Propositional.Classical.Formula.val_atom {α : Type u_1} {F : Type u_2} [LogicalConnective F] [DeMorgan F] (v : αF) {a : α} :
    (val v) (atom a) = v a
    @[simp]
    theorem LO.Propositional.Classical.Formula.val_natom {α : Type u_1} {F : Type u_2} [LogicalConnective F] [DeMorgan F] (v : αF) {a : α} :
    (val v) (natom a) = v a
    Instances For
      theorem LO.Propositional.Classical.models_iff_val {α : Type u_1} {v : Valuation α} {f : Formula α} :
      v f (Formula.val v.val) f
      @[simp]
      theorem LO.Propositional.Classical.Formula.realize_atom {α : Type u_1} {v : Valuation α} {a : α} :
      v atom a v.val a
      @[simp]
      theorem LO.Propositional.Classical.Formula.realize_natom {α : Type u_1} {v : Valuation α} {a : α} :
      v natom a ¬v.val a