def
LO.Propositional.Classical.Formula.valAux
{α : Type u_1}
{F : Type u_2}
[LogicalConnective F]
(v : α → F)
:
Formula α → F
Equations
- LO.Propositional.Classical.Formula.valAux v (LO.Propositional.Classical.Formula.atom a) = v a
- LO.Propositional.Classical.Formula.valAux v (LO.Propositional.Classical.Formula.natom a) = ∼v a
- LO.Propositional.Classical.Formula.valAux v LO.Propositional.Classical.Formula.verum = ⊤
- LO.Propositional.Classical.Formula.valAux v LO.Propositional.Classical.Formula.falsum = ⊥
- LO.Propositional.Classical.Formula.valAux v (φ.and ψ) = LO.Propositional.Classical.Formula.valAux v φ ⋏ LO.Propositional.Classical.Formula.valAux v ψ
- LO.Propositional.Classical.Formula.valAux v (φ.or ψ) = LO.Propositional.Classical.Formula.valAux v φ ⋎ LO.Propositional.Classical.Formula.valAux v ψ
Instances For
def
LO.Propositional.Classical.Formula.val
{α : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[DeMorgan F]
(v : α → F)
:
Equations
- LO.Propositional.Classical.Formula.val v = { toTr := LO.Propositional.Classical.Formula.valAux v, map_top' := ⋯, map_bot' := ⋯, map_neg' := ⋯, map_imply' := ⋯, map_and' := ⋯, map_or' := ⋯ }
Instances For
@[simp]
theorem
LO.Propositional.Classical.Formula.val_atom
{α : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[DeMorgan F]
(v : α → F)
{a : α}
:
@[simp]
theorem
LO.Propositional.Classical.Formula.val_natom
{α : Type u_1}
{F : Type u_2}
[LogicalConnective F]
[DeMorgan F]
(v : α → F)
{a : α}
:
- val : α → Prop
Instances For
Equations
- LO.Propositional.Classical.semantics = { Realize := fun (v : LO.Propositional.Classical.Valuation α) => ⇑(LO.Propositional.Classical.Formula.val v.val) }
theorem
LO.Propositional.Classical.models_iff_val
{α : Type u_1}
{v : Valuation α}
{f : Formula α}
:
v ⊧ f ↔ (Formula.val v.val) f