def
LO.Propositional.Classical.Formula.valAux
{α : Type u_1}
{F : Type u_2}
[LO.LogicalConnective F]
(v : α → F)
:
Equations
- LO.Propositional.Classical.Formula.valAux v (LO.Propositional.Classical.Formula.atom a) = v a
- LO.Propositional.Classical.Formula.valAux v (LO.Propositional.Classical.Formula.natom a) = ∼v a
- LO.Propositional.Classical.Formula.valAux v LO.Propositional.Classical.Formula.verum = ⊤
- LO.Propositional.Classical.Formula.valAux v LO.Propositional.Classical.Formula.falsum = ⊥
- LO.Propositional.Classical.Formula.valAux v (φ.and ψ) = LO.Propositional.Classical.Formula.valAux v φ ⋏ LO.Propositional.Classical.Formula.valAux v ψ
- LO.Propositional.Classical.Formula.valAux v (φ.or ψ) = LO.Propositional.Classical.Formula.valAux v φ ⋎ LO.Propositional.Classical.Formula.valAux v ψ
Instances For
theorem
LO.Propositional.Classical.Formula.valAux_neg
{α : Type u_1}
{F : Type u_2}
[LO.LogicalConnective F]
[LO.DeMorgan F]
(v : α → F)
(φ : LO.Propositional.Classical.Formula α)
:
def
LO.Propositional.Classical.Formula.val
{α : Type u_1}
{F : Type u_2}
[LO.LogicalConnective F]
[LO.DeMorgan F]
(v : α → F)
:
Equations
- LO.Propositional.Classical.Formula.val v = { toTr := LO.Propositional.Classical.Formula.valAux v, map_top' := ⋯, map_bot' := ⋯, map_neg' := ⋯, map_imply' := ⋯, map_and' := ⋯, map_or' := ⋯ }
Instances For
@[simp]
theorem
LO.Propositional.Classical.Formula.val_atom
{α : Type u_1}
{F : Type u_2}
[LO.LogicalConnective F]
[LO.DeMorgan F]
(v : α → F)
{a : α}
:
@[simp]
theorem
LO.Propositional.Classical.Formula.val_natom
{α : Type u_1}
{F : Type u_2}
[LO.LogicalConnective F]
[LO.DeMorgan F]
(v : α → F)
{a : α}
:
- val : α → Prop
Instances For
instance
LO.Propositional.Classical.instCoeFunValuationForallProp
{α : Type u_1}
:
CoeFun (LO.Propositional.Classical.Valuation α) fun (x : LO.Propositional.Classical.Valuation α) => α → Prop
Equations
- LO.Propositional.Classical.instCoeFunValuationForallProp = { coe := LO.Propositional.Classical.Valuation.val }
Equations
- LO.Propositional.Classical.semantics = { Realize := fun (v : LO.Propositional.Classical.Valuation α) => ⇑(LO.Propositional.Classical.Formula.val v.val) }
theorem
LO.Propositional.Classical.models_iff_val
{α : Type u_1}
{v : LO.Propositional.Classical.Valuation α}
{f : LO.Propositional.Classical.Formula α}
:
v ⊧ f ↔ (LO.Propositional.Classical.Formula.val v.val) f
Equations
- ⋯ = ⋯
@[simp]
theorem
LO.Propositional.Classical.Formula.realize_atom
{α : Type u_1}
{v : LO.Propositional.Classical.Valuation α}
{a : α}
:
v ⊧ LO.Propositional.Classical.Formula.atom a ↔ v.val a
@[simp]
theorem
LO.Propositional.Classical.Formula.realize_natom
{α : Type u_1}
{v : LO.Propositional.Classical.Valuation α}
{a : α}
:
v ⊧ LO.Propositional.Classical.Formula.natom a ↔ ¬v.val a