noncomputable def
LO.FirstOrder.Derivation.completeness_of_encodable
{L : Language}
{T : Theory L}
[(k : ℕ) → DecidableEq (L.Func k)]
[(k : ℕ) → DecidableEq (L.Rel k)]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{Γ : Sequent L}
(h : ∀ (M : Type u) [inst : Nonempty M] [inst_1 : Structure L M], M ⊧ₘ* T → ∃ φ ∈ Γ, M ⊧ₘ φ)
:
T ⟹ Γ
Equations
Instances For
theorem
LO.FirstOrder.completeness_of_encodable
{L : Language}
{T : Theory L}
[(k : ℕ) → DecidableEq (L.Func k)]
[(k : ℕ) → DecidableEq (L.Rel k)]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{φ : SyntacticFormula L}
:
instance
LO.FirstOrder.instCompleteTheorySyntacticFormulaSetSmallStrucModels
{L : Language}
{T : Theory L}
[(k : ℕ) → DecidableEq (L.Func k)]
[(k : ℕ) → DecidableEq (L.Rel k)]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
:
Complete T (Semantics.models (SmallStruc L) T)
instance
LO.FirstOrder.instCompleteTheorySyntacticFormulaSetSmallStrucModels_1
{L : Language}
(T : Theory L)
:
Complete T (Semantics.models (SmallStruc L) T)
theorem
LO.FirstOrder.satisfiable_of_consistent'
{L : Language}
{T : Theory L}
(h : System.Consistent T)
:
theorem
LO.FirstOrder.satisfiable_of_consistent
{L : Language}
{T : Theory L}
(h : System.Consistent T)
:
Semantics.Satisfiable (Struc L) T
theorem
LO.FirstOrder.satisfiable_iff_consistent'
{L : Language}
{T : Theory L}
:
Semantics.Satisfiable (Struc L) T ↔ System.Consistent T
theorem
LO.FirstOrder.satidfiable_iff_satisfiable
{L : Language}
{T : Theory L}
:
Semantics.Satisfiable (Struc L) T ↔ Satisfiable T
theorem
LO.FirstOrder.consequence_iff_consequence
{L : Language}
{T : Theory L}
{φ : SyntacticFormula L}
:
instance
LO.FirstOrder.instCompleteTheorySyntacticFormulaSetStrucModels
{L : Language}
(T : Theory L)
:
Complete T (Semantics.models (Struc L) T)