Documentation

Foundation.FirstOrder.Completeness.Completeness

noncomputable def LO.FirstOrder.Derivation.completeness_of_encodable {L : Language} {T : Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {Γ : Sequent L} (h : ∀ (M : Type u) [inst : Nonempty M] [inst_1 : Structure L M], M ⊧ₘ* TφΓ, M ⊧ₘ φ) :
T Γ
Equations
Instances For
    theorem LO.FirstOrder.completeness_of_encodable {L : Language} {T : Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] {φ : SyntacticFormula L} :
    T φT ⊢! φ
    instance LO.FirstOrder.instCompleteTheorySyntacticFormulaSetSmallStrucModels {L : Language} {T : Theory L} [(k : ) → DecidableEq (L.Func k)] [(k : ) → DecidableEq (L.Rel k)] [(k : ) → Encodable (L.Func k)] [(k : ) → Encodable (L.Rel k)] :
    theorem LO.FirstOrder.complete {L : Language} {T : Theory L} {φ : SyntacticFormula L} :
    T φT ⊢! φ
    theorem LO.FirstOrder.complete_iff {L : Language} {T : Theory L} {φ : SyntacticFormula L} :
    T φ T ⊢! φ
    theorem LO.FirstOrder.complete' {L : Language} {T : Theory L} {φ : SyntacticFormula L} :
    T ⊨[Struc L] φT ⊢! φ