noncomputable def
LO.FirstOrder.Derivation.completeness_of_encodable
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
[(k : ℕ) → DecidableEq (L.Func k)]
[(k : ℕ) → DecidableEq (L.Rel k)]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{Γ : LO.FirstOrder.Sequent L}
(h : ∀ (M : Type u) [inst : Nonempty M] [inst_1 : LO.FirstOrder.Structure L M], M ⊧ₘ* T → ∃ p ∈ Γ, M ⊧ₘ p)
:
T ⟹ Γ
Equations
- LO.FirstOrder.Derivation.completeness_of_encodable h = let_fun this := ⋯; LO.FirstOrder.Completeness.syntacticMainLemmaTop this
Instances For
theorem
LO.FirstOrder.completeness_of_encodable
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
[(k : ℕ) → DecidableEq (L.Func k)]
[(k : ℕ) → DecidableEq (L.Rel k)]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
{p : LO.FirstOrder.SyntacticFormula L}
:
instance
LO.FirstOrder.instCompleteTheorySyntacticFormulaSetSmallStrucModels
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
[(k : ℕ) → DecidableEq (L.Func k)]
[(k : ℕ) → DecidableEq (L.Rel k)]
[(k : ℕ) → Encodable (L.Func k)]
[(k : ℕ) → Encodable (L.Rel k)]
:
Equations
- ⋯ = ⋯
theorem
LO.FirstOrder.complete
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
theorem
LO.FirstOrder.complete_iff
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
instance
LO.FirstOrder.instCompleteTheorySyntacticFormulaSetSmallStrucModels_1
{L : LO.FirstOrder.Language}
(T : LO.FirstOrder.Theory L)
:
Equations
- ⋯ = ⋯
theorem
LO.FirstOrder.satisfiable_of_consistent'
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
(h : LO.System.Consistent T)
:
theorem
LO.FirstOrder.satisfiable_of_consistent
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
(h : LO.System.Consistent T)
:
theorem
LO.FirstOrder.consequence_iff_consequence
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
T ⊨[LO.FirstOrder.Struc L] p ↔ T ⊨ p
theorem
LO.FirstOrder.complete'
{L : LO.FirstOrder.Language}
{T : LO.FirstOrder.Theory L}
{p : LO.FirstOrder.SyntacticFormula L}
:
T ⊨[LO.FirstOrder.Struc L] p → T ⊢! p
instance
LO.FirstOrder.instCompleteTheorySyntacticFormulaSetStrucModels
{L : LO.FirstOrder.Language}
(T : LO.FirstOrder.Theory L)
:
Equations
- ⋯ = ⋯