theorem
LO.Modal.Kripke.modal_equivalence_at_root_on_treeUnravelling
{α : Type u_1}
(M : LO.Kripke.Model α)
(M_trans : Transitive M.Frame.Rel)
(r : M.World)
:
⟨[r], ⋯⟩ ↭ r
@[reducible]
Equations
- LO.Modal.Kripke.instSemanticsFormulaDep = { Realize := fun (T : LO.Kripke.FiniteTransitiveTree.Dep α) => LO.Modal.Formula.Kripke.ValidOnFrame T.toFrame }
@[reducible]
instance
LO.Modal.Kripke.instSemanticsFormulaWorld
{α : Type u_1}
{M : LO.Kripke.FiniteTransitiveTreeModel α}
:
LO.Semantics (LO.Modal.Formula α) M.World
Equations
- LO.Modal.Kripke.instSemanticsFormulaWorld = LO.Modal.Formula.Kripke.Satisfies.semantics
theorem
LO.Modal.Kripke.valid_on_FiniteTransitiveTreeClass_of_valid_on_TransitiveIrreflexiveFrameClass
{α : Type u_1}
{p : LO.Modal.Formula α}
(h : LO.Kripke.TransitiveIrreflexiveFrameClassꟳ#α ⊧ p)
(T : LO.Kripke.FiniteTransitiveTree)
:
theorem
LO.Modal.Kripke.satisfies_at_root_on_FiniteTransitiveTree
{α : Type u}
{p : LO.Modal.Formula α}
(h : ∀ (F : LO.Kripke.FiniteTransitiveTree), F# ⊧ p)
(M : LO.Kripke.FiniteTransitiveTreeModel α)
:
LO.Modal.Formula.Kripke.Satisfies M.toModel M.root p
theorem
LO.Modal.Kripke.valid_on_TransitiveIrreflexiveFrameClass_of_satisfies_at_root_on_FiniteTransitiveTree
{α : Type u}
{p : LO.Modal.Formula α}
:
(∀ (M : LO.Kripke.FiniteTransitiveTreeModel α), M.root ⊧ p) → LO.Kripke.TransitiveIrreflexiveFrameClassꟳ#α ⊧ p
theorem
LO.Modal.Kripke.iff_provable_GL_satisfies_at_root_on_FiniteTransitiveTree
{α : Type u}
[Inhabited α]
[DecidableEq α]
{p : LO.Modal.Formula α}
:
𝐆𝐋 ⊢! p ↔ ∀ (M : LO.Kripke.FiniteTransitiveTreeModel α), M.root ⊧ p
theorem
LO.Modal.Kripke.iff_unprovable_GL_exists_unsatisfies_at_root_on_FiniteTransitiveTree
{α : Type u}
[Inhabited α]
[DecidableEq α]
{p : LO.Modal.Formula α}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- LO.Modal.Kripke.«term_↧» = Lean.ParserDescr.trailingNode `LO.Modal.Kripke.term_↧ 1024 1024 (Lean.ParserDescr.symbol "↧")
Instances For
instance
LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.instCoeWorld
{F : LO.Kripke.FiniteTransitiveTree}
:
Equations
- LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.instCoeWorld = { coe := Sum.inr }
@[simp]
theorem
LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.root_not_original
{F : LO.Kripke.FiniteTransitiveTree}
{x : F.World}
:
theorem
LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.root_eq
{F : LO.Kripke.FiniteTransitiveTree}
{x : Fin 1}
:
theorem
LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.forth
{F : LO.Kripke.FiniteTransitiveTree}
{x : F.World}
{y : F.World}
(h : x ≺ y)
:
def
LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.p_morphism
{F : LO.Kripke.FiniteTransitiveTree}
:
Equations
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.FiniteTransitiveTreeModel.SimpleExtension
{α : Type u_1}
(M : LO.Kripke.FiniteTransitiveTreeModel α)
:
Equations
Instances For
Equations
- LO.Modal.Kripke.«term_↧_1» = Lean.ParserDescr.trailingNode `LO.Modal.Kripke.term_↧_1 1024 1024 (Lean.ParserDescr.symbol "↧")
Instances For
instance
LO.Modal.Kripke.FiniteTransitiveTreeModel.SimpleExtension.instCoeWorld
{α : Type u_1}
{M : LO.Kripke.FiniteTransitiveTreeModel α}
:
Equations
- LO.Modal.Kripke.FiniteTransitiveTreeModel.SimpleExtension.instCoeWorld = { coe := Sum.inr }
def
LO.Modal.Kripke.FiniteTransitiveTreeModel.SimpleExtension.p_morphism
{α : Type u_1}
{M : LO.Kripke.FiniteTransitiveTreeModel α}
:
Equations
- LO.Modal.Kripke.FiniteTransitiveTreeModel.SimpleExtension.p_morphism = LO.Kripke.Model.PseudoEpimorphism.mkAtomic LO.Modal.Kripke.FiniteTransitiveTree.SimpleExtension.p_morphism ⋯
Instances For
theorem
LO.Modal.Kripke.FiniteTransitiveTreeModel.SimpleExtension.modal_equivalence_original_world
{α : Type u_1}
{M : LO.Kripke.FiniteTransitiveTreeModel α}
{x : M.toModel.World}
:
theorem
LO.Modal.GL_imply_boxdot_plain_of_imply_box_box
{α : Type u_1}
[DecidableEq α]
[Inhabited α]
{p : LO.Modal.Formula α}
{q : LO.Modal.Formula α}
:
theorem
LO.Modal.GL_unnecessitation!
{α : Type u_1}
[DecidableEq α]
[Inhabited α]
{p : LO.Modal.Formula α}
:
noncomputable instance
LO.Modal.instUnnecessitationHilbertFormulaGL
{α : Type u_1}
[DecidableEq α]
[Inhabited α]
:
Equations
- LO.Modal.instUnnecessitationHilbertFormulaGL = { unnec := fun {p : LO.Modal.Formula α} (h : 𝐆𝐋 ⊢ □p) => Nonempty.some ⋯ }