Documentation

Arithmetization.ISigmaZero.Exponential.PPow2

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem LO.Arith.SPPow2.two_lt {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {m : V} (hm : LO.Arith.SPPow2 m) {i : V} (hi : LO.Arith.LenBit i m) (ne2 : i โ‰  2) :
      2 < i
      theorem LO.Arith.SPPow2.sq_sqrt_eq {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {m : V} (hm : LO.Arith.SPPow2 m) {i : V} (hi : LO.Arith.LenBit i m) (pi : LO.Arith.Pow2 i) (ne2 : i โ‰  2) :
      (โˆši) ^ 2 = i
      theorem LO.Arith.SPPow2.of_sqrt {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {m : V} (hm : LO.Arith.SPPow2 m) {i : V} (pi : LO.Arith.Pow2 i) (him : i โ‰ค m) (hsqi : (โˆši) ^ 2 = i) (hi : LO.Arith.LenBit (โˆši) m) :
      theorem LO.Arith.SPPow2.sq_le_of_lt {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {m : V} (hm : LO.Arith.SPPow2 m) {i : V} {j : V} (pi : LO.Arith.Pow2 i) (pj : LO.Arith.Pow2 j) (hi : LO.Arith.LenBit i m) (hj : LO.Arith.LenBit j m) :
      i < j โ†’ i ^ 2 โ‰ค j
      theorem LO.Arith.SPPow2.last_uniq {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {m : V} (hm : LO.Arith.SPPow2 m) {i : V} {j : V} (pi : LO.Arith.Pow2 i) (pj : LO.Arith.Pow2 j) (hi : LO.Arith.LenBit i m) (hj : LO.Arith.LenBit j m) (hsqi : m < i ^ 2) (hsqj : m < j ^ 2) :
      i = j
      theorem LO.Arith.PPow2.four_lt {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {i : V} (hi : LO.Arith.PPow2 i) (ne2 : i โ‰  2) (ne4 : i โ‰  4) :
      4 < i
      theorem LO.Arith.PPow2.sq_le_of_lt {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {i : V} {j : V} (hi : LO.Arith.PPow2 i) (hj : LO.Arith.PPow2 j) :
      i < j โ†’ i ^ 2 โ‰ค j
      theorem LO.Arith.PPow2.sq_uniq {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {y : V} {i : V} {j : V} (py : LO.Arith.Pow2 y) (ppi : LO.Arith.PPow2 i) (ppj : LO.Arith.PPow2 j) (hi : y < i โˆง i โ‰ค y ^ 2) (hj : y < j โˆง j โ‰ค y ^ 2) :
      i = j
      theorem LO.Arith.PPow2.two_mul_sq_uniq {V : Type u_1} [LO.ORingStruc V] [V โŠงโ‚˜* ๐ˆ๐šบโ‚€] {y : V} {i : V} {j : V} (py : LO.Arith.Pow2 y) (ppi : LO.Arith.PPow2 i) (ppj : LO.Arith.PPow2 j) (hi : y < i โˆง i โ‰ค 2 * y ^ 2) (hj : y < j โˆง j โ‰ค 2 * y ^ 2) :
      i = j