Documentation

Arithmetization.ISigmaZero.Exponential.Exp

def LO.Arith.ext {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] (u z : V) :
V
Equations
Instances For
    theorem LO.Arith.ext_graph {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] (a b c : V) :
    a = LO.Arith.ext b c xc, x = c / b a = x % b
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      • =
      @[simp]
      theorem LO.Arith.ext_le_add {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] (u z : V) :
      @[simp]
      theorem LO.Arith.ext_lt {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {u : V} (z : V) (pos : 0 < u) :
      theorem LO.Arith.ext_add_of_dvd_sq_right {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {u z₁ z₂ : V} (pos : 0 < u) (h : u ^ 2 z₂) :
      LO.Arith.ext u (z₁ + z₂) = LO.Arith.ext u z₁
      theorem LO.Arith.ext_add_of_dvd_sq_left {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {u z₁ z₂ : V} (pos : 0 < u) (h : u ^ 2 z₁) :
      LO.Arith.ext u (z₁ + z₂) = LO.Arith.ext u z₂
      theorem LO.Arith.ext_rem {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {i j z : V} (ppi : LO.Arith.PPow2 i) (ppj : LO.Arith.PPow2 j) (hij : i < j) :
      Equations
      Instances For
        Equations
        Instances For
          Equations
          Instances For
            theorem LO.Arith.Exponential.Seqₛ.iff {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] (y X Y : V) :
            LO.Arith.Exponential.Seqₛ y X Y uy, u 2LO.Arith.PPow2 u((∃ ext_u_XX, ext_u_X = LO.Arith.ext u X 2 * ext_u_X = LO.Arith.ext (u ^ 2) X) ext_u_YY, ext_u_Y = LO.Arith.ext u Y ext_u_Y ^ 2 = LO.Arith.ext (u ^ 2) Y) (∃ ext_u_XX, ext_u_X = LO.Arith.ext u X 2 * ext_u_X + 1 = LO.Arith.ext (u ^ 2) X) ext_u_YY, ext_u_Y = LO.Arith.ext u Y 2 * ext_u_Y ^ 2 = LO.Arith.ext (u ^ 2) Y
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem LO.Arith.Exponential.graph_iff {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] (x y : V) :
              LO.Arith.Exponential x y x = 0 y = 1 Xy ^ 4, Yy ^ 4, (1 = LO.Arith.ext 4 X 2 = LO.Arith.ext 4 Y) LO.Arith.Exponential.Seqₛ y X Y uy ^ 2, u 2 LO.Arith.PPow2 u x = LO.Arith.ext u X y = LO.Arith.ext u Y
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                instance LO.Arith.exponential_definable {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] :
                𝚺₀-Relation LO.Arith.Exponential
                Equations
                • =
                @[simp]
                Equations
                • =
                Equations
                • LO.Arith.Exponential.seqX₀ = 4
                Instances For
                  Equations
                  • LO.Arith.Exponential.seqY₀ = 2 * 4
                  Instances For
                    theorem LO.Arith.Exponential.seq₀_zero_two {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] :
                    LO.Arith.Exponential.Seq₀ LO.Arith.Exponential.seqX₀ LO.Arith.Exponential.seqY₀
                    theorem LO.Arith.Exponential.Seqₛ.rem {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {y y' X Y i : V} (h : LO.Arith.Exponential.Seqₛ y X Y) (ppi : LO.Arith.PPow2 i) (hi : y' ^ 2 < i) (hy : y' y) :
                    theorem LO.Arith.Exponential.seqₛ_one_zero_two {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] :
                    LO.Arith.Exponential.Seqₛ 1 LO.Arith.Exponential.seqX₀ LO.Arith.Exponential.seqY₀
                    Equations
                    Instances For
                      theorem LO.Arith.Exponential.append_lt {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] (i X : V) {z : V} (hz : z < i) :
                      theorem LO.Arith.Exponential.pow2_ext_of_seq₀_of_seqₛ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {y X Y : V} (h₀ : LO.Arith.Exponential.Seq₀ X Y) (hₛ : LO.Arith.Exponential.Seqₛ y X Y) {i : V} (ne2 : i 2) (hi : i y ^ 2) (ppi : LO.Arith.PPow2 i) :
                      theorem LO.Arith.Exponential.le_sq_ext_of_seq₀_of_seqₛ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {y X Y : V} (h₀ : LO.Arith.Exponential.Seq₀ X Y) (hₛ : LO.Arith.Exponential.Seqₛ y X Y) {i : V} (ne2 : i 2) (hi : i y ^ 2) (ppi : LO.Arith.PPow2 i) :
                      theorem LO.Arith.Exponential.two_mul_ext_le_of_seq₀_of_seqₛ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {y X Y : V} (h₀ : LO.Arith.Exponential.Seq₀ X Y) (hₛ : LO.Arith.Exponential.Seqₛ y X Y) {i : V} (ne2 : i 2) (hi : i y ^ 2) (ppi : LO.Arith.PPow2 i) :
                      theorem LO.Arith.Exponential.exponential_odd {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x y : V} :
                      LO.Arith.Exponential (2 * x + 1) y ∃ (y' : V), y = 2 * y' ^ 2 LO.Arith.Exponential x y'
                      theorem LO.Arith.Exponential.two_le_ext_of_seq₀_of_seqₛ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {y X Y : V} (h₀ : LO.Arith.Exponential.Seq₀ X Y) (hₛ : LO.Arith.Exponential.Seqₛ y X Y) {i : V} (ne2 : i 2) (hi : i y ^ 2) (ppi : LO.Arith.PPow2 i) :
                      theorem LO.Arith.Exponential.ext_le_ext_of_seq₀_of_seqₛ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {y X Y : V} (h₀ : LO.Arith.Exponential.Seq₀ X Y) (hₛ : LO.Arith.Exponential.Seqₛ y X Y) {i : V} (ne2 : i 2) (hi : i y ^ 2) (ppi : LO.Arith.PPow2 i) :
                      theorem LO.Arith.Exponential.lt {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x y : V} (h : LO.Arith.Exponential x y) :
                      x < y
                      @[simp]
                      theorem LO.Arith.Exponential.one_le_ext_of_seq₀_of_seqₛ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {y X Y : V} (h₀ : LO.Arith.Exponential.Seq₀ X Y) (hₛ : LO.Arith.Exponential.Seqₛ y X Y) {i : V} (ne2 : i 2) (hi : i y ^ 2) (ppi : LO.Arith.PPow2 i) :
                      theorem LO.Arith.Exponential.uniq {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x y₁ y₂ : V} :
                      LO.Arith.Exponential x y₁LO.Arith.Exponential x y₂y₁ = y₂
                      theorem LO.Arith.Exponential.inj {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x₁ x₂ y : V} :
                      LO.Arith.Exponential x₁ yLO.Arith.Exponential x₂ yx₁ = x₂
                      theorem LO.Arith.Exponential.exponential_elim {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x y : V} :
                      LO.Arith.Exponential x y x = 0 y = 1 ∃ (x' : V) (y' : V), x = x' + 1 y = 2 * y' LO.Arith.Exponential x' y'
                      theorem LO.Arith.Exponential.monotone {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x₁ x₂ y₁ y₂ : V} :
                      LO.Arith.Exponential x₁ y₁LO.Arith.Exponential x₂ y₂x₁ < x₂y₁ < y₂
                      theorem LO.Arith.Exponential.monotone_le {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x₁ x₂ y₁ y₂ : V} (h₁ : LO.Arith.Exponential x₁ y₁) (h₂ : LO.Arith.Exponential x₂ y₂) :
                      x₁ x₂y₁ y₂
                      theorem LO.Arith.Exponential.monotone_iff {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x₁ x₂ y₁ y₂ : V} (h₁ : LO.Arith.Exponential x₁ y₁) (h₂ : LO.Arith.Exponential x₂ y₂) :
                      x₁ < x₂ y₁ < y₂
                      theorem LO.Arith.Exponential.monotone_le_iff {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x₁ x₂ y₁ y₂ : V} (h₁ : LO.Arith.Exponential x₁ y₁) (h₂ : LO.Arith.Exponential x₂ y₂) :
                      x₁ x₂ y₁ y₂
                      theorem LO.Arith.Exponential.add_mul {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₀] {x₁ x₂ y₁ y₂ : V} (h₁ : LO.Arith.Exponential x₁ y₁) (h₂ : LO.Arith.Exponential x₂ y₂) :
                      LO.Arith.Exponential (x₁ + x₂) (y₁ * y₂)
                      Equations
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        @[simp]
                        theorem LO.Arith.exp_one {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] :
                        exp 1 = 2
                        theorem LO.Arith.exp_succ {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
                        exp (a + 1) = 2 * exp a
                        theorem LO.Arith.exp_even {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
                        exp (2 * a) = exp a ^ 2
                        @[simp]
                        theorem LO.Arith.lt_exp {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
                        a < exp a
                        @[simp]
                        theorem LO.Arith.exp_pos {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
                        0 < exp a
                        @[simp]
                        theorem LO.Arith.one_le_exp {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (a : V) :
                        1 exp a
                        @[simp]
                        @[simp]
                        theorem LO.Arith.exp_monotone {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a b : V} :
                        exp a < exp b a < b
                        @[simp]
                        theorem LO.Arith.exp_monotone_le {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] {a b : V} :
                        exp a exp b a b
                        theorem LO.Arith.nat_cast_exp {V : Type u_1} [LO.ORingStruc V] [V ⊧ₘ* 𝐈𝚺₁] (n : ) :
                        (exp n) = exp n