Documentation

Foundation.IntFO.Translation

@[simp]
theorem LO.FirstOrder.Sequent.neg_def {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) :
Γ = List.map (fun (x : Semiformula L ξ n) => x) Γ
@[simp]
theorem LO.FirstOrder.Sequent.neg_nil {L : Language} {ξ : Type u_2} {n : } :
[] = []
@[simp]
theorem LO.FirstOrder.Sequent.neg_cons {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) (φ : Semiformula L ξ n) :
(φ :: Γ) = φ :: Γ
@[simp]
theorem LO.FirstOrder.Sequent.neg_neg_eq {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) :
Γ = Γ
Equations
Instances For
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_rel {L : Language} {ξ : Type u_2} {n k : } (r : L.Rel k) (v : Fin kSemiterm L ξ n) :
    (rel r v).doubleNegation = Semiformulaᵢ.rel r v
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_nrel {L : Language} {ξ : Type u_2} {n k : } (r : L.Rel k) (v : Fin kSemiterm L ξ n) :
    (nrel r v).doubleNegation = Semiformulaᵢ.rel r v
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_verum {L : Language} {ξ : Type u_2} {n : } :
    .doubleNegation =
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_falsum {L : Language} {ξ : Type u_2} {n : } :
    .doubleNegation =
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_and {L : Language} {ξ : Type u_2} {n : } (φ ψ : Semiformula L ξ n) :
    (φ ψ).doubleNegation = φ.doubleNegation ψ.doubleNegation
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_or {L : Language} {ξ : Type u_2} {n : } (φ ψ : Semiformula L ξ n) :
    (φ ψ).doubleNegation = (φ.doubleNegation ψ.doubleNegation)
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_all {L : Language} {ξ : Type u_2} {n : } (φ : Semiformula L ξ (n + 1)) :
    (∀' φ).doubleNegation = ∀' φ.doubleNegation
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_ex {L : Language} {ξ : Type u_2} {n : } (φ : Semiformula L ξ (n + 1)) :
    (∃' φ).doubleNegation = (∀' φ.doubleNegation)
    @[simp]
    theorem LO.FirstOrder.Semiformula.doubleNegation_isNegative {L : Language} {ξ : Type u_2} {n : } (φ : Semiformula L ξ n) :
    φ.doubleNegation.IsNegative
    theorem LO.FirstOrder.Semiformula.rew_doubleNegation {L : Language} {ξ₁ : Type u_2} {n₁ : } {ξ₂ : Type u_3} {n₂ : } (ω : Rew L ξ₁ n₁ ξ₂ n₂) (φ : Semiformula L ξ₁ n₁) :
    (Rewriting.app ω) φ.doubleNegation = ((Rewriting.app ω) φ).doubleNegation
    theorem LO.FirstOrder.Semiformula.substitute_doubleNegation {L : Language} {ξ : Type u_2} {n₁ n₂ : } (φ : Semiformula L ξ n₁) (v : Fin n₁Semiterm L ξ n₂) :
    φ.doubleNegation v = (φ v).doubleNegation
    @[reducible, inline]
    Equations
    Instances For
      @[reducible, inline]
      abbrev LO.FirstOrder.Sequent.doubleNegation {L : Language} {ξ : Type u_2} {n : } (Γ : List (Semiformula L ξ n)) :
      Equations
      Instances For