Equations
- LO.Arith.Nuon.ext L S i = S / LO.Arith.bexp S (i * ‖L‖) % L # 1
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
Equations
- LO.Arith.Nuon.append I L S i X = S % LO.Arith.bexp (I # L) (i * ‖L‖) + X * LO.Arith.bexp (I # L) (i * ‖L‖)
Equations
- LO.Arith.Nuon.IsSegment L A start intv S = ∀ i < intv, LO.Arith.Nuon.ext L S (i + 1) = LO.Arith.Nuon.ext L S i + LO.Arith.fbit A (start + i)
def
LO.Arith.Nuon.Segment
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
(U L A start intv nₛ nₑ : V)
:
Equations
- LO.Arith.Nuon.Segment U L A start intv nₛ nₑ = ∃ S < U, LO.Arith.Nuon.IsSegment L A start intv S ∧ LO.Arith.Nuon.ext L S 0 = nₛ ∧ LO.Arith.Nuon.ext L S intv = nₑ
Equations
- LO.Arith.Nuon.IsSeries U I L A iter T = ∀ l < iter, LO.Arith.Nuon.Segment U L A (‖I‖ * l) ‖I‖ (LO.Arith.Nuon.ext L T l) (LO.Arith.Nuon.ext L T (l + 1))
Equations
- LO.Arith.Nuon.Series U I L A iter n = ∃ T < U, LO.Arith.Nuon.IsSeries U I L A iter T ∧ LO.Arith.Nuon.ext L T 0 = 0 ∧ LO.Arith.Nuon.ext L T iter = n
theorem
LO.Arith.Nuon.SeriesSegment.series
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
{U I L A k n : V}
(H : SeriesSegment U I L A k n)
:
theorem
LO.Arith.Nuon.SeriesSegment.le
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
{U I L A k n : V}
(H : SeriesSegment U I L A k n)
:
n ≤ k
theorem
LO.Arith.Nuon.SeriesSegment.initial
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
{U I L A : V}
(Upos : 0 < U)
:
SeriesSegment U I L A 0 0
theorem
LO.Arith.Nuon.SeriesSegment.zero
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
{U I L k : V}
(Upos : 0 < U)
:
SeriesSegment U I L 0 k 0
theorem
LO.Arith.Nuon.SeriesSegment.uniq
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
{U I L A k n₁ n₂ : V}
(H₁ : SeriesSegment U I L A k n₁)
(H₂ : SeriesSegment U I L A k n₂)
:
n₁ = n₂
Define
, , are polynomial of .
Equations
- LO.Arith.Nuon.polyI A = LO.Arith.bexp (2 * A) (√‖A‖)
Equations
Equations
- LO.Arith.Nuon.polyU A = (2 * A + 1) ^ 128
Equations
- LO.Arith.Nuon.NuonAux A k n = LO.Arith.Nuon.SeriesSegment (LO.Arith.Nuon.polyU A) (LO.Arith.Nuon.polyI A) (LO.Arith.Nuon.polyL A) A k n
Instances For
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Arith.Nuon.isSegmentDef_defined
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
:
FirstOrder.Arith.HierarchySymbol.Defined (fun (v : Fin 5 → V) => IsSegment (v 0) (v 1) (v 2) (v 3) (v 4)) isSegmentDef
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Arith.Nuon.segmentDef_defined
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
:
FirstOrder.Arith.HierarchySymbol.Defined (fun (v : Fin 7 → V) => Segment (v 0) (v 1) (v 2) (v 3) (v 4) (v 5) (v 6))
segmentDef
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Arith.Nuon.isSerieDef_defined
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
:
FirstOrder.Arith.HierarchySymbol.Defined (fun (v : Fin 6 → V) => IsSeries (v 0) (v 1) (v 2) (v 3) (v 4) (v 5))
isSeriesDef
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Arith.Nuon.seriesDef_defined
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
:
FirstOrder.Arith.HierarchySymbol.Defined (fun (v : Fin 6 → V) => Series (v 0) (v 1) (v 2) (v 3) (v 4) (v 5)) seriesDef
Equations
- One or more equations did not get rendered due to their size.
theorem
LO.Arith.Nuon.seriesSegmentDef_defined
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
:
FirstOrder.Arith.HierarchySymbol.Defined (fun (v : Fin 6 → V) => SeriesSegment (v 0) (v 1) (v 2) (v 3) (v 4) (v 5))
seriesSegmentDef
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
LO.Arith.Nuon.NuonAux.initial
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
(A : V)
:
NuonAux A 0 0
@[simp]
theorem
LO.Arith.Nuon.NuonAux.zero
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
(k : V)
:
NuonAux 0 k 0
theorem
LO.Arith.Nuon.NuonAux.le
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
{A k n : V}
(H : NuonAux A k n)
:
n ≤ k
Equations
- LO.Arith.Nuon A n = LO.Arith.Nuon.NuonAux A ‖A‖ n
theorem
LO.Arith.Nuon.exists_unique
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
(A : V)
:
∃! n : V, Nuon A n
Equations
Instances For
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
theorem
LO.Arith.eval_nuon_iff
{V : Type u_1}
[ORingStruc V]
[V ⊧ₘ* 𝐈𝚺₀ + 𝛀₁]
(v : Fin 2 → V)
:
V ⊧/v (FirstOrder.Arith.HierarchySymbol.Semiformula.val FirstOrder.Arith.nuonDef) ↔ v 0 = nuon (v 1)