noncomputable def
LO.System.lem₁_boxdot_Grz_of_L
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.GL 𝓢]
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
LO.System.boxdot_Grz_of_L
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.GL 𝓢]
{φ : F}
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
LO.System.boxdot_Grz_of_L!
{S : Type u_1}
{F : Type u_2}
[LO.BasicModalLogicalConnective F]
[DecidableEq F]
[LO.System F S]
{𝓢 : S}
[LO.System.GL 𝓢]
{φ : F}
:
theorem
LO.Modal.Kripke.iff_boxdot_reflexive_closure
{φ : LO.Modal.Formula ℕ}
{F : LO.Modal.Kripke.Frame}
{V : LO.Modal.Kripke.Valuation F}
{x : { toFrame := F, Val := V }.World}
:
LO.Modal.Formula.Kripke.Satisfies { toFrame := F, Val := V } x (φᵇ) ↔ LO.Modal.Formula.Kripke.Satisfies { toFrame := F^=, Val := V } x φ
theorem
LO.Modal.Kripke.iff_frame_boxdot_reflexive_closure
{φ : LO.Modal.Formula ℕ}
{F : LO.Modal.Kripke.Frame}
:
theorem
LO.Modal.Kripke.iff_reflexivize_irreflexivize
{φ : LO.Modal.Formula ℕ}
{F : LO.Modal.Kripke.Frame}
(F_Refl : Reflexive F.Rel)
{x : F.World}
{V : LO.Modal.Kripke.Valuation F}
:
LO.Modal.Formula.Kripke.Satisfies { toFrame := F, Val := V } x φ ↔ LO.Modal.Formula.Kripke.Satisfies { toFrame := F^≠^=, Val := V } x φ