Documentation

Foundation.Modal.Boxdot.GL_Grz

noncomputable def LO.System.lem₁_boxdot_Grz_of_L {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [DecidableEq F] [System F S] {𝓢 : S} [System.GL 𝓢] {φ : F} :
𝓢 ((φ φ) φ) (φ φ) φ
Equations
  • One or more equations did not get rendered due to their size.
noncomputable def LO.System.boxdot_Grz_of_L {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [DecidableEq F] [System F S] {𝓢 : S} [System.GL 𝓢] {φ : F} :
𝓢 ((φ φ) φ) φ
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem LO.System.boxdot_Grz_of_L! {S : Type u_1} {F : Type u_2} [BasicModalLogicalConnective F] [DecidableEq F] [System F S] {𝓢 : S} [System.GL 𝓢] {φ : F} :
𝓢 ⊢! ((φ φ) φ) φ
theorem LO.Modal.Kripke.iff_boxdot_reflexive_closure {φ : Formula } {F : Frame} {V : Valuation F} {x : { toFrame := F, Val := V }.World} :
Formula.Kripke.Satisfies { toFrame := F, Val := V } x (φ) Formula.Kripke.Satisfies { toFrame := F^=, Val := V } x φ
theorem LO.Modal.Kripke.iff_reflexivize_irreflexivize {φ : Formula } {F : Frame} (F_Refl : Reflexive F.Rel) {x : F.World} {V : Valuation F} :
Formula.Kripke.Satisfies { toFrame := F, Val := V } x φ Formula.Kripke.Satisfies { toFrame := F^≠^=, Val := V } x φ