def
LO.Modal.Kripke.filterEquiv
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
(x : M.World)
(y : M.World)
:
Equations
- LO.Modal.Kripke.filterEquiv M T x y = ∀ (p : LO.Modal.Formula α), autoParam (p ∈ T) _auto✝ → (x ⊧ p ↔ y ⊧ p)
Instances For
theorem
LO.Modal.Kripke.filterEquiv.equivalence
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
def
LO.Modal.Kripke.FilterEqvSetoid
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Setoid M.World
Equations
- LO.Modal.Kripke.FilterEqvSetoid M T = { r := LO.Modal.Kripke.filterEquiv M T, iseqv := ⋯ }
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.FilterEqvQuotient
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Type u_1
Equations
Instances For
theorem
LO.Modal.Kripke.FilterEqvQuotient.finite
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
(T_finite : Set.Finite T)
:
instance
LO.Modal.Kripke.instNonemptyFilterEqvQuotient
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Equations
- ⋯ = ⋯
class
LO.Modal.Kripke.FilterOf
{α : Type u}
(FM : LO.Kripke.Model α)
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
- def_world : FM.World = LO.Modal.Kripke.FilterEqvQuotient M T
- def_box : ∀ {Qx Qy : FM.World}, Qx ≺ Qy → Quotient.lift₂ (fun (x y : M.World) => ∀ (p : LO.Modal.Formula α), □p ∈ T → x ⊧ □p → y ⊧ p) ⋯ (cast ⋯ Qx) (cast ⋯ Qy)
- def_valuation : ∀ (Qx : FM.Frame.World) (a : α) (ha : autoParam (LO.Modal.Formula.atom a ∈ T) _auto✝), FM.Valuation Qx a ↔ Quotient.lift (fun (x : M.Frame.World) => M.Valuation x a) ⋯ (cast ⋯ Qx)
Instances
@[simp]
theorem
LO.Modal.Kripke.FilterOf.def_world
{α : Type u}
{FM : LO.Kripke.Model α}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
[self : LO.Modal.Kripke.FilterOf FM M T]
:
FM.World = LO.Modal.Kripke.FilterEqvQuotient M T
theorem
LO.Modal.Kripke.FilterOf.def_rel₁
{α : Type u}
{FM : LO.Kripke.Model α}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
[self : LO.Modal.Kripke.FilterOf FM M T]
{x : M.Frame.World}
{y : M.Frame.World}
:
theorem
LO.Modal.Kripke.FilterOf.def_box
{α : Type u}
{FM : LO.Kripke.Model α}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
[self : LO.Modal.Kripke.FilterOf FM M T]
{Qx : FM.World}
{Qy : FM.World}
:
Qx ≺ Qy →
Quotient.lift₂ (fun (x y : M.World) => ∀ (p : LO.Modal.Formula α), □p ∈ T → x ⊧ □p → y ⊧ p) ⋯ (cast ⋯ Qx) (cast ⋯ Qy)
theorem
LO.Modal.Kripke.FilterOf.def_valuation
{α : Type u}
{FM : LO.Kripke.Model α}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
[self : LO.Modal.Kripke.FilterOf FM M T]
(Qx : FM.Frame.World)
(a : α)
(ha : autoParam (LO.Modal.Formula.atom a ∈ T) _auto✝)
:
FM.Valuation Qx a ↔ Quotient.lift (fun (x : M.Frame.World) => M.Valuation x a) ⋯ (cast ⋯ Qx)
@[reducible, inline]
abbrev
LO.Modal.Kripke.StandardFilterationValuation
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
(Qx : LO.Modal.Kripke.FilterEqvQuotient M T)
(a : α)
:
Equations
- LO.Modal.Kripke.StandardFilterationValuation M T Qx a = ∀ (ha : LO.Modal.Formula.atom a ∈ T), Quotient.lift (fun (x : M.Frame.World) => M.Valuation x a) ⋯ Qx
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.FinestFilterationFrame
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.FinestFilterationModel
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.FinestFilterationModel M T = { Frame := LO.Modal.Kripke.FinestFilterationFrame M T, Valuation := LO.Modal.Kripke.StandardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.FinestFilterationModel.filterOf
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.FinestFilterationModel.filterOf = { def_world := ⋯, def_rel₁ := ⋯, def_box := ⋯, def_valuation := ⋯ }
@[reducible, inline]
abbrev
LO.Modal.Kripke.CoarsestFilterationFrame
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.CoarsestFilterationModel
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.CoarsestFilterationModel M T = { Frame := LO.Modal.Kripke.CoarsestFilterationFrame M T, Valuation := LO.Modal.Kripke.StandardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.CoarsestFilterationModel.filterOf
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.CoarsestFilterationModel.filterOf = { def_world := ⋯, def_rel₁ := ⋯, def_box := ⋯, def_valuation := ⋯ }
theorem
LO.Modal.Kripke.reflexive_filteration_model
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
{FM : LO.Kripke.Model α}
(h_filter : LO.Modal.Kripke.FilterOf FM M T)
(hRefl : Reflexive M.Frame.Rel)
:
Reflexive FM.Frame.Rel
theorem
LO.Modal.Kripke.serial_filteration_model
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
{FM : LO.Kripke.Model α}
(h_filter : LO.Modal.Kripke.FilterOf FM M T)
(hSerial : Serial M.Frame.Rel)
:
Serial FM.Frame.Rel
theorem
LO.Modal.Kripke.symmetric_finest_filteration_model
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
(hSymm : Symmetric M.Frame.Rel)
:
Symmetric (LO.Modal.Kripke.FinestFilterationModel M T).Frame.Rel
theorem
LO.Modal.Kripke.filteration
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
(FM : LO.Kripke.Model α)
(filterOf : LO.Modal.Kripke.FilterOf FM M T)
{x : M.World}
{p : LO.Modal.Formula α}
(hs : autoParam (p ∈ T) _auto✝)
:
Equations
- ⋯ = ⋯
Equations
- LO.Modal.Kripke.instFiniteFramePropertyKAllFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk
Equations
- ⋯ = ⋯
instance
LO.Modal.Kripke.instFiniteFramePropertyKTBReflexiveSymmetricFrameClass
{α : Type u}
[DecidableEq α]
[Inhabited α]
:
Equations
- LO.Modal.Kripke.instFiniteFramePropertyKTBReflexiveSymmetricFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk
@[reducible, inline]
abbrev
LO.Modal.Kripke.FinestFilterationTransitiveClosureModel
{α : Type u}
(M : LO.Kripke.Model α)
(T : LO.Modal.Theory α)
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.FinestFilterationTransitiveClosureModel M T = { Frame := LO.Modal.Kripke.FinestFilterationFrame M T^+, Valuation := LO.Modal.Kripke.StandardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.FinestFilterationTransitiveClosureModel.filterOf
{α : Type u}
{M : LO.Kripke.Model α}
(M_trans : Transitive M.Frame.Rel)
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.FinestFilterationTransitiveClosureModel.filterOf M_trans = { def_world := ⋯, def_rel₁ := ⋯, def_box := ⋯, def_valuation := ⋯ }
theorem
LO.Modal.Kripke.FinestFilterationTransitiveClosureModel.rel_transitive
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
:
Transitive (LO.Modal.Kripke.FinestFilterationTransitiveClosureModel M T).Frame.Rel
theorem
LO.Modal.Kripke.FinestFilterationTransitiveClosureModel.rel_symmetric
{α : Type u}
{M : LO.Kripke.Model α}
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
(M_symm : Symmetric M.Frame.Rel)
:
Symmetric (LO.Modal.Kripke.FinestFilterationTransitiveClosureModel M T).Frame.Rel
theorem
LO.Modal.Kripke.FinestFilterationTransitiveClosureModel.rel_reflexive
{α : Type u}
{M : LO.Kripke.Model α}
(M_trans : Transitive M.Frame.Rel)
{T : LO.Modal.Theory α}
[T.SubformulaClosed]
(M_refl : Reflexive M.Frame.Rel)
:
Reflexive (LO.Modal.Kripke.FinestFilterationTransitiveClosureModel M T).Frame.Rel
Equations
- ⋯ = ⋯
instance
LO.Modal.Kripke.instFiniteFramePropertyS4PreorderFrameClass
{α : Type u}
[DecidableEq α]
[Inhabited α]
:
Equations
- LO.Modal.Kripke.instFiniteFramePropertyS4PreorderFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk
Equations
- ⋯ = ⋯
instance
LO.Modal.Kripke.instFiniteFramePropertyKT4BEquivalenceFrameClass
{α : Type u}
[DecidableEq α]
[Inhabited α]
:
Equations
- LO.Modal.Kripke.instFiniteFramePropertyKT4BEquivalenceFrameClass = LO.Modal.Kripke.FiniteFrameProperty.mk