@[reducible, inline]
Equations
- LO.Modal.Kripke.ReflexiveSymmetricFiniteFrameClass = {F : LO.Modal.Kripke.FiniteFrame | Reflexive F.Rel ∧ Symmetric F.Rel}
Instances For
@[reducible, inline]
Equations
- LO.Modal.Kripke.ReflexiveTransitiveFiniteFrameClass = {F : LO.Modal.Kripke.FiniteFrame | Reflexive F.Rel ∧ Transitive F.Rel}
Instances For
@[reducible, inline]
Equations
- LO.Modal.Kripke.ReflexiveTransitiveSymmetricFiniteFrameClass = {F : LO.Modal.Kripke.FiniteFrame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Symmetric F.Rel}
Instances For
def
LO.Modal.Kripke.filterEquiv
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
(x y : M.World)
:
Equations
- LO.Modal.Kripke.filterEquiv M T x y = ∀ (φ : LO.Modal.Formula ℕ), autoParam (φ ∈ T) _auto✝ → (x ⊧ φ ↔ y ⊧ φ)
Instances For
theorem
LO.Modal.Kripke.filterEquiv.equivalence
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
def
LO.Modal.Kripke.FilterEqvSetoid
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Setoid M.World
Equations
- LO.Modal.Kripke.FilterEqvSetoid M T = { r := LO.Modal.Kripke.filterEquiv M T, iseqv := ⋯ }
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.FilterEqvQuotient
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Equations
Instances For
theorem
LO.Modal.Kripke.FilterEqvQuotient.finite
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
(T_finite : Set.Finite T)
:
instance
LO.Modal.Kripke.instNonemptyFilterEqvQuotient
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Equations
- ⋯ = ⋯
class
LO.Modal.Kripke.FilterOf
(FM M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
- def_world : FM.World = LO.Modal.Kripke.FilterEqvQuotient M T
- def_valuation : ∀ (Qx : FM.World) (a : ℕ) (ha : autoParam (LO.Modal.Formula.atom a ∈ T) _auto✝), FM.Val Qx a ↔ Quotient.lift (fun (x : M.World) => M.Val x a) ⋯ (cast ⋯ Qx)
Instances
theorem
LO.Modal.Kripke.reflexive_filterOf_of_reflexive
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
{FM : LO.Modal.Kripke.Model}
(h_filter : LO.Modal.Kripke.FilterOf FM M T)
(hRefl : Reflexive M.Rel)
:
Reflexive FM.Rel
theorem
LO.Modal.Kripke.serial_filterOf_of_serial
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
{FM : LO.Modal.Kripke.Model}
(h_filter : LO.Modal.Kripke.FilterOf FM M T)
(hSerial : Serial M.Rel)
:
Serial FM.Rel
@[reducible, inline]
abbrev
LO.Modal.Kripke.standardFilterationValuation
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
(Qx : LO.Modal.Kripke.FilterEqvQuotient M T)
(a : ℕ)
:
Equations
- LO.Modal.Kripke.standardFilterationValuation M T Qx a = ∀ (ha : LO.Modal.Formula.atom a ∈ T), Quotient.lift (fun (x : M.World) => M.Val x a) ⋯ Qx
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.coarsestFilterationFrame
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.coarsestFilterationModel
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.coarsestFilterationModel M T = { toFrame := LO.Modal.Kripke.coarsestFilterationFrame M T, Val := LO.Modal.Kripke.standardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.coarsestFilterationModel.filterOf
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
:
Equations
- ⋯ = ⋯
@[reducible, inline]
abbrev
LO.Modal.Kripke.finestFilterationFrame
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
abbrev
LO.Modal.Kripke.finestFilterationModel
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.finestFilterationModel M T = { toFrame := LO.Modal.Kripke.finestFilterationFrame M T, Val := LO.Modal.Kripke.standardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.finestFilterationModel.filterOf
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
:
Equations
- ⋯ = ⋯
theorem
LO.Modal.Kripke.finestFilterationModel.symmetric_of_symmetric
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
(hSymm : Symmetric M.Rel)
:
@[reducible, inline]
abbrev
LO.Modal.Kripke.finestFilterationTransitiveClosureModel
(M : LO.Modal.Kripke.Model)
(T : LO.Modal.Theory ℕ)
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.finestFilterationTransitiveClosureModel M T = { toFrame := LO.Modal.Kripke.finestFilterationFrame M T^+, Val := LO.Modal.Kripke.standardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.filterOf
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
(M_trans : Transitive M.Rel)
:
Equations
- ⋯ = ⋯
theorem
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.transitive
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
:
theorem
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.symmetric_of_symmetric
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
(M_symm : Symmetric M.Rel)
:
theorem
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.reflexive_of_transitive_reflexive
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
(M_trans : Transitive M.Rel)
(M_refl : Reflexive M.Rel)
:
theorem
LO.Modal.Kripke.filteration
{M : LO.Modal.Kripke.Model}
{T : LO.Modal.Theory ℕ}
[T.SubformulaClosed]
(FM : LO.Modal.Kripke.Model)
(filterOf : LO.Modal.Kripke.FilterOf FM M T)
{x : M.World}
{φ : LO.Modal.Formula ℕ}
(hs : φ ∈ T)
: