@[reducible, inline]
Equations
- LO.Modal.Kripke.ReflexiveSymmetricFiniteFrameClass = {F : LO.Modal.Kripke.FiniteFrame | Reflexive F.Rel ∧ Symmetric F.Rel}
Instances For
@[reducible, inline]
Equations
- LO.Modal.Kripke.ReflexiveTransitiveFiniteFrameClass = {F : LO.Modal.Kripke.FiniteFrame | Reflexive F.Rel ∧ Transitive F.Rel}
Instances For
@[reducible, inline]
Equations
- LO.Modal.Kripke.ReflexiveTransitiveSymmetricFiniteFrameClass = {F : LO.Modal.Kripke.FiniteFrame | Reflexive F.Rel ∧ Transitive F.Rel ∧ Symmetric F.Rel}
Instances For
theorem
LO.Modal.Kripke.filterEquiv.equivalence
(M : Model)
(T : Theory ℕ)
[T.SubformulaClosed]
:
Equivalence (filterEquiv M T)
Equations
- LO.Modal.Kripke.FilterEqvSetoid M T = { r := LO.Modal.Kripke.filterEquiv M T, iseqv := ⋯ }
Instances For
@[reducible, inline]
Equations
Instances For
theorem
LO.Modal.Kripke.FilterEqvQuotient.finite
(M : Model)
(T : Theory ℕ)
[T.SubformulaClosed]
(T_finite : Set.Finite T)
:
Finite (FilterEqvQuotient M T)
instance
LO.Modal.Kripke.instNonemptyFilterEqvQuotient
(M : Model)
(T : Theory ℕ)
[T.SubformulaClosed]
:
Nonempty (FilterEqvQuotient M T)
- def_world : FM.World = FilterEqvQuotient M T
- def_valuation (Qx : FM.World) (a : ℕ) (ha : Formula.atom a ∈ T := by trivial) : FM.Val Qx a ↔ Quotient.lift (fun (x : M.World) => M.Val x a) ⋯ (cast ⋯ Qx)
Instances
@[reducible, inline]
abbrev
LO.Modal.Kripke.standardFilterationValuation
(M : Model)
(T : Theory ℕ)
[T.SubformulaClosed]
(Qx : FilterEqvQuotient M T)
(a : ℕ)
:
Equations
- LO.Modal.Kripke.standardFilterationValuation M T Qx a = ∀ (ha : LO.Modal.Formula.atom a ∈ T), Quotient.lift (fun (x : M.World) => M.Val x a) ⋯ Qx
Instances For
@[reducible, inline]
Equations
- LO.Modal.Kripke.coarsestFilterationModel M T = { toFrame := LO.Modal.Kripke.coarsestFilterationFrame M T, Val := LO.Modal.Kripke.standardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.coarsestFilterationModel.filterOf
{M : Model}
{T : Theory ℕ}
[T.SubformulaClosed]
:
FilterOf (coarsestFilterationModel M T) M T
@[reducible, inline]
Equations
- LO.Modal.Kripke.finestFilterationModel M T = { toFrame := LO.Modal.Kripke.finestFilterationFrame M T, Val := LO.Modal.Kripke.standardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.finestFilterationModel.filterOf
{M : Model}
{T : Theory ℕ}
[T.SubformulaClosed]
:
FilterOf (finestFilterationModel M T) M T
theorem
LO.Modal.Kripke.finestFilterationModel.symmetric_of_symmetric
{M : Model}
{T : Theory ℕ}
[T.SubformulaClosed]
(hSymm : Symmetric M.Rel)
:
Symmetric (finestFilterationModel M T).Rel
@[reducible, inline]
abbrev
LO.Modal.Kripke.finestFilterationTransitiveClosureModel
(M : Model)
(T : Theory ℕ)
[T.SubformulaClosed]
:
Equations
- LO.Modal.Kripke.finestFilterationTransitiveClosureModel M T = { toFrame := LO.Modal.Kripke.finestFilterationFrame M T^+, Val := LO.Modal.Kripke.standardFilterationValuation M T }
Instances For
instance
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.filterOf
{M : Model}
{T : Theory ℕ}
[T.SubformulaClosed]
(M_trans : Transitive M.Rel)
:
theorem
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.transitive
{M : Model}
{T : Theory ℕ}
[T.SubformulaClosed]
:
theorem
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.symmetric_of_symmetric
{M : Model}
{T : Theory ℕ}
[T.SubformulaClosed]
(M_symm : Symmetric M.Rel)
:
theorem
LO.Modal.Kripke.finestFilterationTransitiveClosureModel.reflexive_of_transitive_reflexive
{M : Model}
{T : Theory ℕ}
[T.SubformulaClosed]
(M_trans : Transitive M.Rel)
(M_refl : Reflexive M.Rel)
: