Documentation

Foundation.Modal.Kripke.Geach

@[reducible, inline]
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    instance LO.Kripke.instIsGeachReflexiveEuclideanFrameClassConsGeachTapleMkOfNatNatNil :
    LO.Kripke.ReflexiveEuclideanFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 1, j := 1, m := 0, n := 1 }]
    Equations
    • One or more equations did not get rendered due to their size.
    instance LO.Kripke.instIsGeachReflexiveSymmetricFrameClassConsGeachTapleMkOfNatNatNil :
    LO.Kripke.ReflexiveSymmetricFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
    Equations
    • One or more equations did not get rendered due to their size.
    instance LO.Kripke.instIsGeachPreorderFrameClassConsGeachTapleMkOfNatNatNil :
    LO.Kripke.PreorderFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }]
    Equations
    • One or more equations did not get rendered due to their size.
    instance LO.Kripke.instIsGeachEquivalenceFrameClassConsGeachTapleMkOfNatNatNil :
    LO.Kripke.EquivalenceFrameClass.IsGeach [{ i := 0, j := 0, m := 1, n := 0 }, { i := 0, j := 2, m := 1, n := 0 }, { i := 0, j := 1, m := 0, n := 1 }]
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    • LO.Modal.Kripke.axiomGeach_definability = { define := , nonempty := }
    Equations
    • LO.Modal.Kripke.axiomT_defines = .mpr LO.Modal.Kripke.axiomGeach_definability
    Equations
    • LO.Modal.Kripke.axiomFour_defines = .mpr LO.Modal.Kripke.axiomGeach_definability
    Equations
    • LO.Modal.Kripke.axiomMultiGeach_definability = { define := , nonempty := }
    Equations
    • LO.Modal.Kripke.Geach_definability = inferInstance
    instance LO.Modal.Kripke.instGeachLogicSound {α : Type u} [Inhabited α] {ts : List GeachTaple} {Λ : LO.Modal.Hilbert α} {𝔽 : LO.Kripke.FrameClass} [logic_geach : Λ.IsGeach ts] [class_geach : 𝔽.IsGeach ts] :
    LO.Sound Λ 𝔽#α
    Equations
    • =
    instance LO.Modal.Kripke.instCompleteHilbertFormulaDepAltOfIsGeachOfIsGeach {α : Type u} [Inhabited α] [DecidableEq α] {ts : List GeachTaple} {Λ : LO.Modal.Hilbert α} {𝔽 : LO.Kripke.FrameClass} [logic_geach : Λ.IsGeach ts] [class_geach : 𝔽.IsGeach ts] :
    LO.Complete Λ 𝔽#α
    Equations
    • =