Notation
Quantification of formulae are defined using de Bruijn index, but we can write terms and formulae by usual binder notation using macro.
variables x y z is just an example and can take any number of idents.
e is an expression of term/formula.
Binder Notation
Binder notation of term takes either form:
- Term:
‘x y z. e’, Formula:“x y z. e”x y zis the symbol for the bound variables,k:num-variables denotes the terms inSemiterm L ξ (n + $k)/Semiformula L ξ (n + $k). (ncan be variable)
- Term:
‘x y z | e’, Formula:“x y z | e”x y zis the symbol for the free variables,k:num-variables denotes the terms inSemiterm L ξ n/Semiformula L ξ n. (ncan be variable)
- Term:
‘e’, Formula:“e”- An abbreviation of
‘ . e’/“ . e”
- An abbreviation of