Notation
Quantification of formulae are defined using de Bruijn index, but we can write terms and formulae by usual binder notation using macro.
variables x y z
is just an example and can take any number of ident
s.
e
is an expression of term/formula.
Binder Notation
Binder notation of term takes either form:
- Term:
‘x y z. e’
, Formula:“x y z. e”
x y z
is the symbol for the bound variables,k:num
-variables denotes the terms inSemiterm L ξ (n + $k)
/Semiformula L ξ (n + $k)
. (n
can be variable)
- Term:
‘x y z | e’
, Formula:“x y z | e”
x y z
is the symbol for the free variables,k:num
-variables denotes the terms inSemiterm L ξ n
/Semiformula L ξ n
. (n
can be variable)
- Term:
‘e’
, Formula:“e”
- An abbreviation of
‘ . e’
/“ . e”
- An abbreviation of