Soundness for Kripke Semantics
Let deduction system of 𝓓 has necessitation. If 𝓓 ⊢! p then p is valid on every frame in 𝔽(Ax(𝓓)).
instance [HasNec 𝓓] : Sound 𝓓 𝔽(Ax(𝓓))
Consistency of Deduction System via Kripke Semantics
From soundness theorem, if 𝔽(Ax(𝓓)) is nonempty, deduction system of 𝓓 is consistent (i.e. not every formula is provable in 𝓓).
instance [FrameClass.IsNonempty 𝔽(Ax(𝓓))] : System.Consistent 𝓓
It is immediately apparent, frameclass of 𝔽(Ax(𝐊)) is nonempty, thus 𝐊 is consistent.
instance : FrameClass.IsNonempty 𝔽(Ax(𝐊))
instance : System.Consistent 𝐊
Futhermore, if 𝓓 is Geach, then its frameclass is nonempty, thus it is consistent.
instance [𝓓.IsGeach] : FrameClass.IsNonempty 𝔽(Ax(𝓓))
instance [𝓓.IsGeach] : System.Consistent 𝓓