Soundness for Kripke Semantics
Let deduction system of 𝓓
has necessitation. If 𝓓 ⊢! p
then p
is valid on every frame in 𝔽(Ax(𝓓))
.
instance [HasNec 𝓓] : Sound 𝓓 𝔽(Ax(𝓓))
Consistency of Deduction System via Kripke Semantics
From soundness theorem, if 𝔽(Ax(𝓓))
is nonempty, deduction system of 𝓓
is consistent (i.e. not every formula is provable in 𝓓
).
instance [FrameClass.IsNonempty 𝔽(Ax(𝓓))] : System.Consistent 𝓓
It is immediately apparent, frameclass of 𝔽(Ax(𝐊))
is nonempty, thus 𝐊
is consistent.
instance : FrameClass.IsNonempty 𝔽(Ax(𝐊))
instance : System.Consistent 𝐊
Futhermore, if 𝓓
is Geach, then its frameclass is nonempty, thus it is consistent.
instance [𝓓.IsGeach] : FrameClass.IsNonempty 𝔽(Ax(𝓓))
instance [𝓓.IsGeach] : System.Consistent 𝓓