Axioms
As an example, describe about axiom . Other axioms such as and follow the same manner.
-- Axiom schema
abbrev System.Axioms.K (p q : F) := □(p ⟶ q) ⟶ □p ⟶ □q
abbrev Modal.Standard.AxiomSet (α : Type*) := Set (Modal.Standard.Formula α)
abbrev Modal.Standard.AxiomSet.K : AxiomSet α := { System.Axioms.K p q | (p) (q) }
notation "𝗞" => Modal.Standard.AxiomSet.K
Well-Known Axioms
Notation | Name | Schema | Geach |
---|---|---|---|
𝗞 | K | □(p ⟶ q) ⟶ □p ⟶ □q | |
𝗧 | T | □p ⟶ p | ✅ |
𝗕 | B | p ⟶ □◇p | ✅ |
𝗗 | D | □p ⟶ ◇p | ✅ |
𝟰 | Four | □p ⟶ □□p | ✅ |
𝟱 | Five | ◇p ⟶ □◇p | ✅ |
.𝟮 | Dot2 | ◇□p ⟶ □◇p | ✅ |
.𝟯 | Dot3 | □(□p ⟶ □q) ⋎ □(□q ⟶ □p) | |
𝗟 | L | □(□p ⟶ p) ⟶ □p | |
𝗚𝗿𝘇 | Grz | □(□(p ⟶ □p) ⟶ p) ⟶ p | |
𝗧𝗰 | Tc | p ⟶ □p | ✅ |
𝗩𝗲𝗿 | Ver | □p | |
𝗖𝟰 | C4 | □□p ⟶ □p | ✅ |
𝗖𝗗 | CD | ◇p ⟶ □p | ✅ |
𝗠 | M | □◇p ⟶ ◇□p |
Geach Axioms
Geach Axiom is defined as .
structure Geach.Taple where
i : ℕ
j : ℕ
m : ℕ
n : ℕ
abbrev Geach (l : Geach.Taple) (p : F) := ◇^[l.i](□^[l.m]p) ⟶ □^[l.j](◇^[l.n]p)
notation "𝗴𝗲(" t ")" => AxiomSet.Geach t
Some axioms is generalized as Geach axioms (Above table, Geach: ✅). For example and .