On Gödel-Löb Logic
Logics Equivalent to GL
Let's introduce Henkin Axiom 𝗛
, Löb Rule (𝐋)
, Henkin Rule (𝐇)
.
protected abbrev H := □(□p ⟷ p) ⟶ □p
class LoebRule where
loeb {p : F} : 𝓢 ⊢ □p ⟶ p → 𝓢 ⊢ p
class HenkinRule where
henkin {p : F} : 𝓢 ⊢ □p ⟷ p → 𝓢 ⊢ p
𝐊𝟒𝐇
is defined normal logic that axioms are𝗞
,𝟰
,𝗛
.𝐊𝟒(𝐋)
is defined as𝐊𝟒
extended(𝐋)
.𝐊𝟒(𝐇)
is defined as𝐊𝟒
extended(𝐇)
.
These logics are equivalent to 𝐆𝐋
.
lemma reducible_GL_K4Loeb : 𝐆𝐋 ≤ₛ 𝐊𝟒(𝐋)
lemma reducible_K4Loeb_K4Henkin: 𝐊𝟒(𝐋) ≤ₛ 𝐊𝟒(𝐇)
lemma reducible_K4Henkin_K4H : 𝐊𝟒(𝐇) ≤ₛ 𝐊𝟒𝐇
lemma reducible_K4Henkin_GL : 𝐊𝟒𝐇 ≤ₛ 𝐆𝐋
--- Obviously `𝐆𝐋 =ₛ 𝐊𝟒(𝐋) =ₛ 𝐊𝟒(𝐇) =ₛ 𝐊𝟒𝐇`, since transitivity of `≤ₛ` and definition of `=ₛ`.
Note: 𝐊𝐇
(normal logic that axioms are 𝗞
, 𝗛
) is proper weak logic of 𝐆𝐋
and not Kripke complete.